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Bistability, Noise, and Information Processing in Sensory Neurons

A. R. Bulsara

NCCOSC-RDT&E Division, Code 573, San Diego, CA 92152-5000

We consider the interpretation of time series data signal is applied; its effect is to rock the potential,
from firing events in periodically stimulated sen- alternately raising and lowering the wells. How-
sory neurons. A theoretical model, representing ever, should its amplitude be very low (cojppared
the neurons as bistable switching elements to the height of the potential barrier), it will not
embedded in a Gaussian noise background, is be able to induce switching. In the presence of
considered. The cooperative effects arising even small amounts of noise (assumed throughout
through the coupling of the noise to the modula- this work to be Gaussian) there will, however,
tion are examined, together with their possible always be a finite switching probability. Since the
implications in the features of Inter-Spike- switching probability will be greater when the
Interval Histograms (ISIHs) that are ubiquitous in system is in the 'elevated' well, wbich occurs
neurophysiological experimental data. Our when the signal is at its maximum, one realizes
approach provides the simplest possible interpre- that the noise-induced switching events may
tation of the ISIHs and has been found to repro- acquire some degree of coherence with the deter-
duce the salient features of experimental ISIHs. ministic signal. A plot of SNR vs. noise strength

demonstrates a characteristic bell-shaped profile.
Introduction With increasing noise, the SNR rises until, for a

Neuroscientists have known for decades critical noise strength, the intra-well motion is

that sensory information is encoded in the inter- dominated by the inter-well (or switching)
vals between the action potentials or "spikes" dynamics at which point the SNR decreases with
characterizing neural firing events. Statistical ana- noise; for very large noise strengths, the switch-

lyses of experimentally obtained spike trains have ing becomes noise-dominated, the particle spends
shown the existence of a significant random com- very little time in the attracting states of the
ponent in the inter-spike intervals. There has been potential and all coherence with the periodic sig-
speculation, of late, that the noise may actually nal is destroyed. For low modulation frequencies,
facilitate the transmission of sensory information; the critical noise strength (at the maximum of the
certainly there exists evidence that noise in net- SNR curve) corresponds to an approximate
works of neurons can dynamically alter the pro- matching between the modulation frequency and
perties of the membrane potential and the time twice the Kramers rate (this is the characteristic
constants [1]. The recent re-kindling of interest in well-to-well switching rate in the absence of the
the Stochastic" Resonance phenomenon [2] has signal), hence the somewhat misleading charac-
lead to speculation that such nonlinear coopera- terization of this effect as a 'resonance' in the
tive effects may occur naturally in living systems. physics literature.

Stochastic resonance is a cooperative non- Stochastic resonance (as characterized by
linear phenomenon wherein the signal-to-noise the bell-shaped curve of SNR vs. noise) has not

ratio (SNR) at the output of a noisy nonlinear yet been directly observed in living systems with
dynamic system driven by a weak deterministic internal noise. One of its prime ingredients,
modulation (which we shall take to be time- noise-induced switching, has however been
periodic), can actually be enhanced by increasing demonstrated explicitly, in biological experiments
the noise. Given a bistable dynamic system, for [3,4]. In all such experiments, it is common to

example, information is transmitted through the assemble an ensemble of firing events and fit a

system in the form of switching events between histogram to the refractory or reset intervals
the stable states (attractors) of the potential func- occurring between the "spikes". Such Inter-
tion underlying the dynamics. Suppose a periodic Spike-Interval Histograms (ISIHs) are ubiquitous
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in the neurophysiological literature and, as we maximum of the stimulus cycle If it fails, it will
shall see below, can be simply and elegantly try again at the next maximum, and so on. The
explained by simple models of neurons as latter sequence is the only one observable in an
bistable dynamic switching devices subject to experiment; the former sequence, which
noise. We now summarize results obtained with corresponds to the refractory events is elegantly
such a model of the response of sensory neurons elucidated by the LBM theory. In addition to the
to weak periodic signals embedded in noise. peak spacing in the ISIH, most of the other sub-

stantitive features of experimental ISIHs are
Neurons as Nonlinear Dynamic Systems: Sta- explainable [7] via the simple model (1):
tistical Analysis of Spike Trains (a). Decreasing the noise intensity (keeping all

Recent work by Longtin, Bulsara and Moss other parameters fixed) leads to more peaks in the

(LBM) [5] has demonstrated how experimental histogram since the "skipping" referred to above

ISIHs measured, for example, on the auditory becomes more likely. Conversely, increasing the

nerve fibers of squirrel monkey [6) could be noise intensity tends to concentrate most of the

explained via a new interpretation of noise-driven probability in the first few peaks of the histogram.

bistable dynamics. They introduced a simple (b). In general, the probability density of

bistable neuron model, a two-state system con- residence times is well approximated by a

trolled by a double-well potential with neural Gamma-like distribution of the form

firing events corresponding to transitions over the P(T)=(T/<T>2)exp(-TI<T>), where <T> is

potential barrier (whose height was set such that the mean of the ISIH. It is apparent that P (T) -4 0

the deterministic stimulus alone could not cause and exp(-T/<T>) in the short and long time lim-

transitions). The cell dynamics were described via its, respectively. For vanishingly small stimulus

a variable x(t), loosely denoting the membrane amplitude q, the distribution tends to a Gamma,

potential, and evolving according to conforming to experimental observations.
(c). Increasing the stimulus amplitude leads to an

x=f (x)+ q sin cot +F (t), (1) increase in the heights of the lower lying peaks in

where f (x) is a flow'function (expressible as the the ISIH.
gradient of a potential U(x)) and F(t) is noise, (d). Memory effects (even within the framework

taken to be Gaussian, delta-correlated, with zero of a description based on the theory of renewal

mean and variance 2D. In the bistable descrip- processes) frequently occur, particularly at very
tion, the potential was taken to be the "soft" func- low driving frequencies; they manifest them-

tion U(x)=ax2 /2-b In (cosh x). The system (1) selves in deviations from an exponentially decay-

has been numerically integrated, with the ing envelope at low residence times (the first peak

residence time in each potential well (these times in the ISIH may not be the tallest one).
represent the firing and quiescent intervals in our (e). The mean of the ISIH yields (through its

model) assembled into a histogram (the residence inverse) the mean firing rate.

times density function P (t)), which displays a (f). The ISIH decay rate X (the slope of the
sequence of peaks with a characteristic spacing. envelope on a semi-log scale) itself depends sen-
Two unique sequences of temporal measurements sitively (exponentially) on the stimulus amplitude
are possible: the first measures the residence q for constant noise strength, and (again,
times in only one of the states of the potential and exponentially) on the noise strength for fixed q.
the histogram consists of peaks located at Analog simulations of the dynamics yield an
t = n T0/2, To being the period of the determinis- extremely good fit [5,7] to experimental data; the
tic modulation and n an odd integer. The second fit can be realized by changing only one parame-
sequence encompasses measurements of the total ter (the stimulus intensity or the noise intensity).
time spent in both potential wells, i.e. it includes The important point to note here is that the results
the active and reset intervals; in the presence of are almost independent of the functional form of
noise, the reset intervals are of largely stochastic the potential U(x), depending critically on the

duration. The histogram corresponding to this ratio of barrier height to noise variance; this ratio

sequence consists of peaks at locations I = n To determines the hopping rate between the basins of
where n is any integer. The sequence of peaks attraction in the absence of noise.

implies a form of phase locking of the neural The LBM theory demonstrates that the
dynamics to the stimulus. Starting from its quies- peaks of the ISIH cannot exist in the absence of
cent state, the neuron attempts to fire at the first noise. In fact, one could speculate that, over a
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certain range of parameters, the noise and signal to "baths" of dendrites have shown that, for cer-
play interchangeable roles in determining the tain classes of neurons, models such as (1) can be
shape of the ISIH. All the stimulus and noise derived for a macroscopic or collective variable
features are encoded in the ISIH, with the phase x(t) describing the many-body system, with the
preference (we assume perfect phase locking to coefficients a and b in the potential being func-Sthe stimulus throughout; this assumptions seems tions of all the cell and dendritic parameters (the
to be consistent with experimental auditory nerve effect of the dendritic coupling is to modify the
data at least [6]) encoded in the peak width. The height of the potential barrier and the spacing of
noise may be used by the neuron to encode the the elliptic points, thereby directly affecting the
stimulus features in the IS1H, while preserving a switching dynamics and the structure of the
fine amplitude discrimination through the ISIH). The SNR at the output of such a many-
exponential dependence on k. Other researchers body system can be further enhanced (over its
(8] have shown that noise linearizes the mean expected value for the isolated case) by the cou-
firing rate-vs. current characteristic in neurons, pling to the noisy bath. The potential funcionr for
producing a large dynamic range along with ISIH the system becomes bimodal above a critical
variations. This dynamic range is not found in value of b/a; this transition to bimodality is
noiseless Hodgkins-Huxley type models. Identi- mediated by the noise in the dendritic bath. Since
fying the mean firing rate with the inverse of the none of the cooperative effects that we have
mean of the ISIH seems to lead one naturally to described here will occur in a monostable poten-
this encoding. Although the LBM model pro- tial, the critical role of background noise is evi-
vides an important first step in the understanding dent.
of the (possibly pivotal) role of noise in sensory
information transfer, it is far from complete. The Discussion and Conclusion
results do not appear to depend critically on the It seems fitting to conclude this review with
characteristics of the potential function U(x) and a question and some speculation. Clearly the
the fundamental question: what aspects of the question to be answered is: "Is the neuron indeed
data are due to the statistfcal properties of noisy a noisy nonlinear switching element, describeable
two-state systems as opposed to real (i.e. biologi- by a bistable dynamics of the form (1) (with, say,
cal) properties of cells that transcend this simple a 'soft' potential U(x))?" Certainly, there is
description, has not been satisfactorily answered, ample evidence that noise plays a critical role in
although an important first step in this direction is the transmission and coding of information in the
afforded by recent, more rigorous work [7]. nervous system. It seems reasonable then, that

Bistable models of the type discussed there should exist a form of self-regulatory
above provide one of the simplest explanations of mechanism such that the internal parameters of
the possible mechanism underlying the process- the system (i.e. the potential parameters) can be
ing and coding of sensory information in the ner- adjusted in response to the stimulus and noise
vous system. They elucidate the sequence of reset characteristics. This is important, because, for
events that follow each neural firing, and noise is given stimulus and noise, one obtains well-
seen to play a pivotal role in the production of the defined histograms for only a small range of U0.
ISIHs. The class of models discussed above One may speculate further that the neuron (or the
represents bistability between two fixed points; network) then uses the background noise so that
the system dynamics are underpinned by the its response (measured via the SNR or,
potential function U(x). Other types of bistability equivalently, through the ISIH) is optimized. This
can also occur in neurophysiology e.g. the implies that the network operates close to the
Fitzhugh-Nagumo model represents bistability maximum of the stochastic resonance curve (SNR
between a fixed point and a limit cycle with the vs. noise variance) while simultaneously obtain-
transition between these attractors accompanied ing other information (e.g. amplitude, frequency.
by a Hopf bifurcation; this model is deriveable and phase) about the deterministic stimulus, via
from the Hodgkins-Huxley equations under cer- the ISIH. In effect, our construction and interpre-
tain conditions. The dynamics in a generic tation of the ISIH (together with the remarkable
bistable system of the form (1) displays the N- ability to explain most of the features of experi-
shaped flow characteristic that is known to exist mentally obtained ISIHs) as a natural outcome of
in exciteable cells (9]. Recent treatments [10] of our modelling the neuron as a noisy bistable
many-body problems consisting of cells coupled switching element implies that sensory neurons
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may measure the stimulus intensity by comparing right; it points to the existence of a fundamental
it to the background noise, using the (internally nonlinear dynamic mechanism underlying the cell
adjusted) potential barrier height to mediate and response and the dynamics underlying stochastic
optimize the measurement [F. Moss 1992; private resonance seem to be the most likely to provide
discussions]. Our studies of collective behavior in explanations for the observed effects. These
large networks show [10] that the coupling to (albeit somewhat preliminary) results lend
other elements can enhance or degrade the SNR credence to our speculations regarding the posi-
depending on the magnitudes and signs of the tive role of noise in the detection and
coupling coefficients (i.e., the excitatory or inhi- quantification of signals by sensory neurons.
bitory nature of the interactions is critical).
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